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ABSTRACT

Direct asymmetric catalytic Michael reactions have been performed using chiral-amine/acid bifunctional catalysts. Performed with 0.3 equiv of
(S)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine and 0.3 equiv of trifluoroacetic acid as the catalyst, the reaction of r,r-dialkylaldehydes with (E)-
â-nitrostyrene provided the r,r-dialkyl Michael products in up to 96% yield with up to 91% ee. With respect to enantioselectivity, L-proline
was a poor catalyst of this class of Michael reactions.

The organocatalytic direct asymmetric Michael reaction is
one of the most powerful and efficient methods for carbon-
carbon bond formation to provide enantiomerically enriched
nitroalkanes.1,2 Use of R,R-disubstituted aldehydes should
provide direct access to Michael products possessing an all-
carbon quaternary stereocenter. Although reactions of un-
modifiedR-monosubstituted aldehydes or ketones have been
described,3 there are few reports of the use ofR,R-
disubstituted aldehydes.3j,q,4,5 The synthesis of all-carbon

quaternary stereogenic centers is considered a challenging
topic in asymmetric synthesis. As detailed in this com-
munication, we investigated the direct Michael reaction of
R,R-disubstituted aldehyde donors with (E)-â-nitrostyrenes
acceptors to generate all-carbon quaternary stereogenic
centers.

We have recently described organocatalytic direct asym-
metric aldol reactions usingR,R-disubstituted aldehydes as
aldol donors to synthesizeâ-hydroxyaldehydes with stereo-
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genic quaternary carbon centers (Scheme 1).4,5 To rapidly
screen catalysts and reaction conditions for the aldol reac-
tions, we have developed a fluorescent detection system using
fluorogenic maleimide1 (Scheme 2).6

The results obtained using this fluorescent screening
methodology were directly correlated with those obtained
in the actual aldol reactions and allowed for the optimization
of this reaction. Chiral-diamine/trifluoroacetic acid (TFA)4

and pyrrolidine/acetic acid combination catalysts5 were
shown to be highly effective in the aldol reaction.7 Aldol
products were obtained with high enantioselectivities when
(S)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine/TFA was used as
the catalyst. Therefore, we have taken advantage of the
results of the fluorescent screening4,6 and have focused on
the use of amines and the selected amine/acid combination
as catalysts for the actual Michael reaction.

First we examined amine catalysts4-12 (Figure 1) with
or without acid for the reaction of isobutyraldehyde (13a)

and â-nitrostyrene (14) to afford the Michael product15a
possessing a quaternary carbon atom. The results are shown
in Table 1. When pyrrolidine/acetic acid was used as the
catalyst,15a was obtained in good yield (84%) after 12 h
(entry 1). The reaction withL-proline proceeded smoothly
and afforded15a in good yield (87%), but the enantiose-

lectivity was unacceptably low (23% ee) (entry 2).L-Prolinol
(6) was a good catalyst, providing the desired product in
79% yield and 63% ee (entry 3). Use of catalysts with bulky
substituents (catalysts8 and9) resulted in either poor yield
or poor enantioselectivity (entries 5 and 6). (S)-(+)-1-(2-
Pyrrolidinylmethyl)pyrrolidine (10)/TFA (0.3 equiv) afforded
15a in an excellent yield with a 61% ee (entry 8). Addition
of acid improved the enantioselectivity (entry 7 vs 8) as
observed in aldol reactions, but the improvement was
moderate.4 The combination of diamines11/TFA or 12/TFA

Scheme 1. Direct Cross-Aldol Reaction ofR,R-Disubstituted
Aldehyde

Scheme 2. Fluorescent Detection Systems for C-C Bond
Formation

Figure 1. Various amine catalysts.

Table 1. Organocatalyzed Direct Michael Reactions for the
Synthesis of Quaternary Carbon

entry catalysta additive (equiv) time (h) yield (%) eeb (%)

1c 4 AcOH (1.5) 12 84
2 5 48 87 23
3 6 48 79 63
4 7 48 72 17
5 8 AcOH (0.3) 96 <1 65
6 9 AcOH (0.3) 96 82 21
7 10 0.5 90 50
8 10 TFA (0.3) 24 96 61
9 11 TFA (0.3) 96 19 73

10 12 TFA (0.3) 96 4 75

a Catalyst structures are shown in Figure 1.b Determined by chiral HPLC
using a CHIRALPAK AS-H column.c Isobutylaldehyde (1.2 equiv) was
used.

Table 2. Solvent Effect for Organocatalyzed Direct Michael
Reactions

entry solvent yield (%) ee (%)a

1 MeCN 10 56
2 MeOH b 57
3 CH2Cl2 25 60
4 DMSO 96 61
5 DMF 18 61
6 2-PrOH 93 63
7 toluene 17 65
8 CHCl3 67 66
9 Et2O 96 68

10 1,4-dioxane 11 70
11 THF 35 71
12 [bmim]PF6 23 73
13 [bmim]BF4 37 75
14c 100% 2-PrOH, 4 °C 87 80

a Determined by chiral HPLC using a CHIRALPAK AS-H column.
b Mixtures of product and acetal.c No addition of DMSO. The reaction was
carried out for 48 h.

2528 Org. Lett., Vol. 6, No. 15, 2004



gave a better enantioselectivity than10/TFA, but the reaction
was slow and the yield was low after 4 days (entries 9 and
10).

Using diamine10/TFA as a catalyst, a series of different
solvent systems was evaluated as shown in Table 2.8 DMSO,
2-propanol, and diethyl ether were superior solvents in terms
of product yield (entries 4, 6, and 9). Diethyl ether gave the
highest ee of the solvents tested; however, the solubility of
diamine10/TFA catalyst was poor in diethyl ether. Ionic
liquids such as [bmim]PF6 and [bmim]BF4 showed over 70%
ee, but yields were low (entries 12 and 13). Therefore, we
chose 2-PrOH as a solvent for further study. The Michael
reaction was carried out in 2-PrOH at 4°C, rather than room
temperature, to give the Michael product in 87% yield with
80% ee (entry 14).9

Encouraged by these results, we further examined the
scope of this class of Michael reactions with a series ofR,R-
disubstituted aldehyde donors13a-k using10/TFA catalyst
under the same reaction conditions (Table 3). Cyclopentane-
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Table 3. Diamine10/TFA-Catalyzed Direct Michael Reactions for the Synthesis of Quaternary Carbon

a Determined by1H NMR. b Determined by chiral HPLC analysis using CHIRALCEL OD-H, OJ-H, and/or CHIRALPAK AS-H columns.c Starting
material was recovered in 9% (entry 8), 25% (entry 9), 30% (entry 10), and 16% (entry 11) yields.
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carboxaldehyde (13b) was an excellent donor: the reaction
provided the Michael product15b in excellent yield in 24 h
with 91% ee (entry 2), while the reaction of cyclohexane-
carboxaldehyde (13c) afforded 59% ee (entry 3). When
R-methyl-R-alkylaldehydes13a-g were used as the donors,
the expected Michael products were obtained with at least
87% yield with good enantioselectivities (entries 1-7). The
reaction of aldehyde donors13h-k possessing an aromatic
group afforded Michael products in moderate yield with
moderate enantiomeric excesses (entries 8-11).

The major Michael product15d was determined to have
a syn configuration by X-ray crystallographic analysis of the
2,4-dinitrophenylhydrazone derivative (Scheme 3).10 There-
fore, diamine10/TFA catalyzed asi-facial attack on the
â-nitrostyrene via an enamine intermediate (Figure 2). This
result is in accord with previously proposed diamine-based
Michael transition states.1b

In summary, the diamine10/TFA bifunctional catalyst
demonstrated good reactivity and enantioselectivity in this
class of Michael reactions. This method provides direct
access to chiralγ-nitroaldehydes, which are versatile precur-
sors forγ-aminobutyric acid neurotransmitters,11 1,4-amino
alcohols for use as chiral ligands,12 and unusualγ-amino
acids.
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space groupP-1 (No. 2),a ) 8.2921(17) Å,b ) 11.639(2) Å,c ) 12.066-
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Scheme 3. Determination of Stereochemistry

Figure 2. Proposed transition state.
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